Cycle Computing and the HPC Experiment

By Ian Armas Foster

July 15, 2013

With hardware advancing at a relatively stable (if still exponential) rate and datasets increasing at a much higher rate, parallelism is a main tenet of high performance computing today. That parallelism is difficult to attain in a cloud environment, as latencies there are typically higher, thus slowing performance.

Three weeks ago, Jason Stowe, CEO of Cycle Computing, spoke with HPC in the Cloud about their work in renting large clusters of Amazon HPC instances for companies looking for a short but powerful burst of that parallelized computing power. The focus was on how they aided Schrodinger in winning a Bio-IT Best Practices award with their intensive yet relatively inexpensive protein calculations.

That conversation took place on the heels of a presentation done with Wolfgang Gentzsch and Burak Yenier in association with the HPC Experiment, where Stowe went more into detail about the additional use cases in which Cycle Computing has facilitated HPC experimentation in the cloud. Gentzsch and Yenier also went on to provide an update on the HPC experiment, the fourth round of which kicks off this week.

The problem with in-house HPC equipment, according to Stowe, lies in a lack of stability in resource requirement. Oftentimes the HPC cluster goes under-utilized, meaning relatively expensive machinery is idling on valuable floor space. On the other end of the spectrum, the servers may not fulfill the peak needs of the institution.

“The clusters are too small when you need them most…you generally wish it was several times larger than it actually is,” Stowe said of companies with in-house resources when they face the peak of their intermittent computing needs schedule.

The challenge was based on the knowledge that, according to Stowe, that some top ten pharmaceutical companies can run approximately 341,700 hours of computing against a cancer target every year.

“We essentially were able to run very large sets of compounds an order of magnitude over what they normally would have been able to provision against different cancer affiliated proteins,” he said.

As Stowe noted, their work was in drug design and running simulations on how to either stimulate or halt protein activity. “What you’re trying to do,” he said, “is knock small molecules that lock so that they either inhibit or enhance, depending on the nature of the protein and the disease pathway, its function as a protein.”

As mentioned in last month’s article, through their Utility HPC platform, Cycle Computing aims to reduce computing time, resulting in lower costs for the clients.

Of course, while these tests are intriguing and the protein simulations are useful, what really showcases their worth is if such simulations result in the development of cancer drugs that otherwise would not have been possible. According to Stowe, Novartis proved that usefulness.

Two years ago, Novartis ran a 30,000-core Intel Xeon system setup on AWS via Cycle. They announced earlier this year that as a result of those computations, they found three compounds of interest from a drug target perspective.

These things often take time to verify as the drug trial process, which often involves clinical trials with cancerous patients, cannot yet be simulated via a supercomputing cluster. “Part of the enemy is time,” Stowe said. “We’ve run these workloads for significant clients in the past like Novartis and Schrodinger, but oftentimes you don’t know the impact of them until many years have passed.”

One of the advantages here is the ability to access a relatively large cluster for a short amount of time, thus accruing significantly less computing expense. For companies who look to run those 11 hour bursts, it would seem that they may need to prepare their applications ahead of time.

However, as evidenced by the other use cases Stowe referenced, namely CAD/CAM from an engineering perspective and genomics, there exist companies who make consistent use of a Cycle-AWS cluster over the course of three months.

“They had about 1200 of these 576-core jobs that they needed to run, each of which had its own 100-GB dataset,” Stowe said of a company who operated ten clusters concurrently to accomplish those 576-core jobs. Stowe estimated that such a physical system would take nine months to build, whereas that Cycle-facilitated process only ran three months. In another example, Cycle assisted in completing a million compute hours in one week for under $20,000 for a genomics company whose problem was shown below.

As evidenced by Stowe’s use cases and as noted by Gentzsch in the presentation, high performance applications run in the cloud serve a greater use to mid-sized institutions with neither the time nor the funds to purchase and implement an HPC cluster on their own. Those mid-sized institutions constitute a good portion of the 475 participants and 85 ‘teams’ that have participated in the HPC Experiment over its first three rounds.

Round four begins this month, and a more in-depth update will be provided within the next month in an article from Gentzsch. The full presentation from Stowe, Gentzsch, and Yenier can be found below.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire