The New Era of Intelligent Application Mobility

By Duncan Johnston-Watt

July 19, 2011

Duncan Johnston-Watt, founder & CEO of Cloudsoft describes the concept of intelligent application mobility and what it signals for the new era of being able to seamlessly move applications across clouds and locations.

The dramatic growth in the use of multiple networked computers – often spread across the globe – in order to support business applications makes it compelling for an application to have mobility. For example, the impact of maintaining a server machine is reduced if the application(s) it hosts can be moved to an alternative machine before starting maintenance; disasters can be avoided if an application can be moved off failing machines; network load can be reduced by moving (all or parts of) an application closer to its data; performance can be improved if (all or parts of) an application is moved closer to its users.

Consequently a number of approaches are well established for achieving application mobility. For example, infrastructure virtualization vendors offer application mobility by moving virtual-machines between physical machines (VMware and IBM both refer to this as “live application mobility” 1). Distributed caching vendors facilitate mobility via the data tier2.

However these approaches are only partially effective. The “all-or-nothing” approach of moving entire virtual machines around, especially across wide-area networks, is expensive and slow.  The complex co-ordination of data across distributed caches will often fatally compromise performance and/or integrity, especially for high throughput systems or again where wide-area networks are involved. Instead what’s needed is a far more agile form of application mobility, and one that’s far better suited to the cloud generation.

What is Intelligent Application Mobility?

Intelligent Application Mobility enables business applications to dynamically distribute themselves as needed across multiple machines, locations, and clouds – while they are still running and under the full control of user-defined policies.
Intelligent Application Mobility achieves this by:

–    creating an all-software overlay network (on top of, and with no change to, existing networks)  that dynamically spans machines, locations and clouds as needed to form an Elastic Process Fabric

–    activating applications as fine-grained segments that can flow across the Elastic Process Fabric as needed

–    using policies combined with real-time monitoring to continually optimize segment deployment – for example to ensure that each segment is in the right location to deliver best performance

What types of applications need Intelligent Application Mobility?

It’s probably fair to say that most types of application would benefit to some extent from Intelligent Application Mobility: a self-optimizing application with real-time elasticity and that can near-instantly move itself out of harm’s way will always be advantageous. However there are particular types of application for which the approach is compelling.

Applications that execute business transactions are difficult to scale and distribute as they must maintain consistency and integrity when changes are made to data. Maintaining these constraints is rarely a problem when data contention and transaction volumes are low but challenges quickly emerge as business applications scale-out, particularly where applications involve wide area networks. Traditional approaches to solving scalability challenges include statically partitioning an application across multiple resources, replicating and synchronising multiple instance of the application, and the prevailing vogue of “stateless programming”.

The use of “stateless applications” is particularly interesting as ‘received wisdom’ deems that this approach is essential for cloud deployments: by removing application state from the server tier it doesn’t matter which instance of a server handles any given request, so “instance-on-demand” is available whereby you can spin up and spin down as many instances of the server as you want.

However so-called stateless approaches simply delegate the management of data contention to the data tier, which invariably makes the application less efficient: all necessary state has to be fetched from the data tier prior to servicing each request; any changes to business state must be mediated by the data tier; and all state must be given back to the data tier after each request. Consequently what would be simple and lightweight to achieve in a stateful process now becomes more complex and long-winded in a stateless process.

So the sweet-spots for Intelligent Application Mobility include any or all of the following characteristics:

–    distribution across multiple machines, locations or clouds

–    high volumes of transactions

–    volatile or unpredictable workloads

How is it used?

The capabilities that make up Intelligent Application Mobility, as discussed above, are exactly the kind of capabilities that middleware is intended to implement and make available as a service to developers. And with the availability of development frameworks such as Spring (from SpringSource) and  Seam (from Red Hat), this type of middleware can now be all-but completely hidden from the developer.  Consequently the main requirement for using Intelligent Application Mobility is to ensure that your applications are designed in a way that allows their deployment as fine-grained segments. For example, Microsoft actually calls these fine-grained segments “grains” and puts them at the heart of their “Framework for Cloud Computing”3.

One of the key advantages of encapsulating Intelligent Application Mobility in middleware in this way is that the developer can now, for the first time, code completely scale-agnostic, distribution-agnostic, and cloud-agnostic applications. Development returns to the simplicity of coding just the business logic and making method calls in order to use another service – the Intelligent Application Mobility middleware takes care of scaling, distribution and management issues at run-time.

About the Author

Duncan Johnston-Watt (Founder & Chief Executive Officer) is a serial entrepreneur and industry visionary with over twenty years experience in the software industry. Immediately prior to founding Cloudsoft Duncan was CTO at Enigmatec Corporation, the enterprise data center automation company he founded in 2001.  

A Computerworld Smithsonian Laureate for his pioneering work introducing Java Enterprise to financial services, Duncan holds an MSc in Computation from Oxford University and a BA in Mathematics and Philosophy from Leeds University

REFERENCES

1.    

“AIX 6 Workload Partition and Live Application Mobility”
http://www.ibm.com/developerworks/aix/library/au-wpar/index.html

“VMWare and F5 Announce Collaboration for Cloud Live Application Mobility”
http://news.softpedia.com/news/VMWare-and-F5-Announce-Collaboration-for-Cloud-Live-Application-Mobility-120583.shtml

“Enhance Business Continuance with Application Mobility Across Data Centers”
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9402/white_paper_c11-591960.pdf

2.

NetApp DataMotion
http://www.netapp.com/us/products/platform-os/datamotion.html

“What Is an Enterprise Data Fabric?”
http://community.gemstone.com/pages/viewpage.action?pageId=6032133

Scaleout Geoserver
http://www.scaleoutsoftware.com/products/product-extensions/scaleout-geoserver/

3.

“Orleans: A Framework for Cloud Computing” by Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus, Ravi Pandya, and Jorgen Thelin; 30 November 2010
http://research.microsoft.com/apps/pubs/default.aspx?id=141999

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire